Venous insufficiency and the sportsman

Varices or not Varices?
Superficial venous adaptation during an effort

1. Superficial venous dilatation

2. Activation of the muscular calf pump
 Limitation of the deep venous dilatation
 ➔ Acceleration of the DV circulation

3. Saturation of the DVS
 ➔ Acceleration of the SV circulation

4. Heat thermoregulation
 ➔ Acceleration of the SV circulation

Venous turgescence
Locomotion sport:
- Gymnastic
- Walking
- Race
- Swimming
- Cross country skiing
- Ice skating
- Cycling

Static sport:
- Weight-lifting
- Wrestling
- Rowing
- Canoeing
- Equestrianism
- Formula race
- Mountain-climbing
- Jumping

GOOD
Increasing of the flux
Decreasing of the pressure

BAD
No variation of the flux
Increasing of the pressure
Varicose risks in the sportsmen

Genetic predispositions

Too much sport
- Weight-lifting
- Wrestling
- Rowing
- Canoeing
- Equestrianism
- Formula race
- Mountain-climbing
- Jumping

Leaflet breaking

Varicose veins

Traumatic sport

Venous injury
- SV thrombosis
- AV anastomosis
Venous turgescence ≠ varices
N=1670

• Intense physical activity is the same risk
• Physical activity increases the risk of turgescence and varices
Venous turgescence ≠ varices

Venous turgescence

No treatment
But compression

Varices

Treatment
Large turgescence or incompetent trunk and static sport

- Weight-lifting
- Wrestling
- Rowing
- Canoeing
- Equestrianism
- Formula race
- Mountain-climbing
- Jumping

Surgical treatment
Large turgescence or incompetent trunk and locomotion sport

- Gymnastic
- Walking
- Race
- Swimming
- Cross country skiing
- Ice skating
- Cycling

????????????
No consensus
Be careful

After a stripping the professional sportsman need one year training to recover his previous performance!
Conclusion

Varices \neq turgescence or incompetence of the trunk

Varices must be removed

Turgescence without incompetence = nothing

Turgescence with incompetence with static sport = surgery

Turgescence with incompetence with locomotion sport = ????????